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What is 1ibEnsemble

» 1libEnsemble is a library to coordinate the concurrent evaluation of
dynamic ensembles of calculations

» Developed to use massively parallel resources to accelerate the
solution of design, decision, and inference problems

» Developed to expand the class of problems that can benefit from
increased computational concurrency levels

> libEnsemble uses a manager to allocate work to various workers

» A libEnsemble worker is the smallest indivisible unit to perform
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N
libEnsemble requires of the user

gen_f: Generates inputs to sim_f and alloc_f

sim_f: Evaluates a simulation (i.e., user-defined function) using input
defined by gen_f

alloc_f: Decides whether (or not) sim_f or gen_f should be called
(and with what input/resources) as workers become available
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libEnsemble dependencies

» Python 3.5+, NumPy, psutil

If using MPI communications in 1ibEnsemble

» An MPI implementation (e.g., MPICH) built with shared/dynamic
libraries

» mpidpy v2.0.0 or above

> Can also use multiprocessing or TCP for 1ibEnsemble
communications

» Example gen_f/sim_f functions require NLopt, PETSc, SciPy,
Tasmanian, etc.



libEnsemble overview
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Possible user requirements of 1ibEnsemble

» sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function
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Possible user requirements of 1ibEnsemble

>
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sim_f/gen_f calculations can employ/access parallel resources

» This places requirements on user’s environment and
simulation/generation function

Maintenance of calculation history and performance measures
Termination of unresponsive simulation/generation calculations
Termination based on intermediate simulation/generation output

Nonfatal handling (i.e., graceful degradation/fail soft) of failed
simulation/generation calculation

Ability to recover hardware resources from
1libEnsemble-/generation-/simulation-terminated calculations

Simulation/generation checkpoint and restart

Execution on multiple LCFs (Summit/OLCF, Cori/NERSC,
Theta/ALCF)

Thousands of concurrent workers



OPAL particle accelerator simulations on 1024 Theta
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OPAL particle accelerator simulations on 1024 Theta
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Why would you want to use 1ibEnsemble?

> Easily take serial code and start running in parallel
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Why would you want to use 1ibEnsemble?

> Easily take serial code and start running in parallel
» Add another level of parallelism to a simulation that no longer scales

» Don’t have to write your own tracking code, 1ibEnsemble will tell
you which runs fail and start other work

» Don’t have to write your own Kkills, just complete 1ibEnsemble
templates

> Want to add concurrency to a generator (e.g., multiple local
optimizers.)



Why 1libEnsemble and not...?

Swift: (the parallel scripting language)

» “Can run million programs, thousands at a time, launching
hundreds per second”

» Require writing your generators in Swift’s scripting language

» Difficult to tightly couple generation of inputs and future/active
running simulations
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libEnsemble overview
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libEnsemble overview
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libEnsemble modes: centralized or distributed
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Timing 1ibEnsemble overhead
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Timing 1ibEnsemble overhead

» Time for 1ibEnsemble to sample/evaluation 30 x (workers) points
» Tons of system-dependent caveats
» 32 nodes x 36 cores = 1152-1 workers
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Use cases

» A user wants to optimize a function that depends on a simulation
» The simulation is already using parallel resources, but not a large
fraction of some computer

> libEnsemble can coordinate the concurrent evaluation of the
simulation sim_f at various parameter values and gen_f would
return candidate parameter values (possibly after each sim_f output)



Use cases

> A user has a gen_f that produces different meshes to be used within
a sim_f

> Given the sim_f output, gen_£ will refine a mesh or produce a new
mesh

> libEnsemble can ensure that the calculated meshes can be used by
multiple simulations without requiring movement of data



Use cases

» A user wants to evaluate a simulation sim_f at parameters sampled
from a set of parameter values

» Many parameter sets will cause the simulation to fail

» libEnsemble can stop unresponsive evaluations, and recover
computational resources for future evaluations

» gen_f can update the sampling after discovering regions where
evaluations of sim_f fail



Use cases

» A user has a simulation sim_f that requires calculating multiple
expensive quantities, some of which depend on other quantities

» libEnsemble can observe intermediate quantities in order to stop
related calculations and preempt future calculations associated with
a poor parameter values



Use cases

> A user wishes to identify multiple local optima for a sim_f

> libEnsemble can use the points from the APOSMM gen_f to
identify optima
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Use cases

> A user wishes to identify multiple local optima for a sim_f
> libEnsemble can use the points from the APOSMM gen_f to
identify optima

Naturally, combinations of use cases is supported as well
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Problem setup
> We want to identify distinct, “high-quality”, local minimizers of
minimize f(x)

I<x<u
x eR”

» High-quality can be measured by more than the objective
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Problem setup

> We want to identify distinct, “high-quality”, local minimizers of
minimize f(x)
[ <x<u
x € R"
» High-quality can be measured by more than the objective

» Derivatives of f may or may not be available

» The simulation f is likely using parallel resources, but it does not
utilize the entire machine

» Possibly have a specialized local optimization method for f



MMMMMM




MMMMMM




MMMMMM




MMMMMM




MMMMMM




MMMMMM




. =
N
.o

w =




w =







MMMMMM




MMMMMM




MMMMMM




MMMMMM




APOSMM

Iteration: 37; r_k: 0.589
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APOSMM

Iteration: 38; r_k: 0.574
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APOSMM

Iteration: 39; r_k: 0.560
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APOSMM

Iteration: 40; r_k: 0.548
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APOSMM

Iteration: 41; r_k: 0.536
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APOSMM

Iteration: 42; r_k: 0.525
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APOSMM

Iteration: 43; r_k: 0.515
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APOSMM

Iteration: 44; r_k: 0.497

L]
°
°
L ‘
L
°
/'\ o

15 of 16



APOSMM

Iteration: 45; r_k: 0.480
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Closing Remarks

> We have a growing set of use cases and examples

» Let us know if you have examples you'd like to see

> https://github.com/Libensemble/libensemble
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